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Abstract. We investigate utilizing the integer programming (IP) tech-
nique of reduced cost fixing to improve maximum satisfiability (MaxSAT)
solving. In particular, we show how reduced cost fixing can be used within
the implicit hitting set approach (IHS) for solving MaxSAT. Solvers
based on IHS have proved to be quite effective for MaxSAT, especially
on problems with a variety of clause weights. The unique feature of IHS
solvers is that they utilize both SAT and IP techniques. We show how
reduced cost fixing can be used in this framework to conclude that some
soft clauses can be left falsified or forced to be satisfied without influ-
encing the optimal cost. Applying these forcings simplifies the remaining
problem. We provide an extensive empirical study showing that reduced
cost fixing employed in this manner can be useful in improving the state-
of-the-art in MaxSAT solving especially on hard instances arising from
real-world application domains.

1 Introduction

Maximum satisfiability (MaxSAT) [17] is a thriving constraint optimization par-
adigm, successfully applied in a growing number of NP-hard real-world problem
domains. The currently most successful MaxSAT solvers are SAT-based, i.e.,
rely on Boolean satisfiability solver technology [4]. In particular, they use SAT
solvers to iteratively extract unsatisfiable cores (unsatisfiable sets of soft clauses)
and block these cores from the search in the later iterations, until a solution is
found. One of the currently most successful algorithmic approaches—as wit-
nessed by the most recent MaxSAT Evaluations [2]—are solvers implementing
the so-called implicit hitting set (IHS) approach for MaxSAT. IHS MaxSAT
solvers [8,9,11,23,24] employ a hybrid approach that exploits both a SAT solver
for core extraction and an integer programming (IP) solver for obtaining mini-
mum cost hitting sets of the accumulated cores.
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Despite the success and recent algorithmic advances in MaxSAT solvers, the
SAT-based MaxSAT solvers do not—as witnessed by the empirical results pre-
sented in this paper—currently harness the full potential of bounds-based prob-
lem simplification during search. Focusing on IHS as the approach which solved
the most instances in the general weighted partial category of the 2016 MaxSAT
Evaluation, we propose to take advantage of classical ideas from the realm of
integer programming to further improve state-of-the-art MaxSAT solvers. In
more detail, we show how to integrate reduced cost fixing [6,7,22], a standard
technique in IP solving that uses bounds on the optimal cost derived during
search for inferring variables whose values can be fixed while preserving at least
one optimal solution. As we will explain in detail, in terms of MaxSAT search,
reduced cost fixing amounts to using upper bounds obtained during search to
harden or falsify specific soft clauses, i.e., to force them to be satisfied or falsified.
The IHS approach to MaxSAT is a prime candidate for integrating reduced cost
fixing since the reduced costs of soft clauses can be readily obtained by solving a
linear (LP) relaxation of the hitting set problem maintained during IHS search.
Putting this idea into practice, we extend the IHS solver MaxHS with reduced
cost fixing, and provide an extensive empirical evaluation showing that reduced
cost fixing considerably speeds up MaxHS.

In terms of related work, different techniques of using lower and lower bounds
for speeding up MaxSAT solver have studied in varying contexts, including
branch-and-bound for MaxSAT [15,16,18,19], use of bounds for MaxSAT solvers
in general [13], and hardening based on SAT inferred costs of residual formulas
in pure SAT-based core-guided MaxSAT solving [1,21]. However, to the best
of our knowledge, linear programming relaxation based reduced cost fixing has
not been previously proposed in the context of MaxSAT. There has, however,
been a number of related works exploiting the technique of reduced cost fixing
in constraint programming, IP/constraint logic programming, and IP/constraint
programming, e.g., [12,26,28].

After background on MaxSAT (Sect. 2), we give a bounds-based view of the
IHS approach to MaxSAT (Sect. 3), explain how to integrate reduced cost fixing
into it (Sect. 4), and present empirical results on the effectiveness of reduced cost
fixing in speeding up the IHS solver MaxHS (Sect. 5).

2 Maximum Satisfiability

We work with propositional formulas expressed in conjunctive normal form
(CNF). Satisfaction of CNF formulas is defined as usual. Whenever conve-
nient we treat a clause as a set of literals and a CNF formula as a set of
clauses. An instance of (weighted partial) maximum satisfiability (MaxSAT) F =
(Fh, Fs,wt) consists of two CNF formulas: the hard clauses Fh, the soft clauses
Fs and a weight function wt : Fs → Q associating a positive rational weight to
each soft clause. Given such an instance, any truth assignment τ that satisfies the
hard clauses is a solution to F . The cost of a solution τ , cost(F, τ), is the sum
of the weights of the soft clauses it falsifies: cost(F, τ) =

∑
{τ �|=C|C∈Fs} wt(C).
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A solution τ is optimal if cost(F, τ) ≤ cost(F, τ ′) for all solutions τ ′. Given
an instance F the MaxSAT problem is to find an optimal solution to F . We
denote the cost of optimal solutions to F by opt cost(F ). We also use cost(S),
for any set of soft clauses S, to denote the sum of weights of the soft clauses in
S: cost(S) =

∑
c∈S wt(c). For a MaxSAT instance F = (Fh, Fs,wt), an unsat-

isfiable core of F is any subset S ⊆ Fs of soft clauses such that Fh ∪ S is
unsatisfiable.

3 The SAT-IP Implicit Hitting Set Approach to MaxSAT

IHS MaxSAT solvers [8–11,23,24] utilize the so-called implicit hitting set app-
roach [14,20,25] to solve weighted partial MaxSAT. These solvers use a SAT
solver to accumulate cores and an IP solver to compute a minimum-cost hitting
set of the accumulated cores. Since each core is unsatisfiable, any solution must
falsify at least one soft clause in every core, i.e., the set of soft clauses falsified
by any solution must form a hitting set of the set of cores. Therefore, the cost of
any solution is lower-bounded by the cost of the minimum-cost hitting. Further,
if these costs are equal, then the solution must be optimal. As first described in
[8] an iteration can be set up that ensures that the IHS solver finds an optimal
solution after producing a finite number of cores.

Algorithm 1. The IHS approach to MaxSAT (generalized from [8])
1 IHS-MaxSAT

(
F = (Fh, Fs,wt)

)

2 (sat, κ, τ) ← SolveSAT(Fh) /* If unsat return a core κ, else a solution τ */
3 if not sat then return “No solutions since Fh is UNSAT”
4 UB ← cost(F, τ); best τ ← τ ; LB = 0 /* Initial bounds */
5 Optimizer.initialze(wt); new cores ← ∅; hs is sat ← hs is opt ← false
6 while UB > LB do
7 (hs is opt ,HS) ← Optimizer(new cores,UB)
8 if hs is opt then LB = cost(HS)
9 (hs is sat , κ, τ) ← SolveSAT(Fh ∪ (Fs \ HS))

10 if not hs is sat then
11 repeat
12 new cores ← new cores ∪ κ
13 (sat, κ, τ) ← SolveSAT(Fn ∪ (Fs \ (HS ∪⋃κ∈new cores κ)))

14 until sat

15 if cost(τ) < UB then UB ← cost(τ); best τ ← τ

16 return best τ

This original algorithm does not, however, provide the upper bounds needed
for reduced cost fixing. Upper bounds can be obtained by using non-optimal
hitting sets as described in [11]. We give, in Algorithm 1, a new more general
formalization of the algorithm described in [11] and a more general correctness
condition.
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The algorithm first computes an initial model by solving Fh. The returned τ
is also a solution to F , and provides an initial upper bound once we check which
clauses of Fs are satisfied by τ .

The Optimizer maintains the set of cores passed to it, adding the cores in
new cores to this set (line 7). It always returns a hitting set HS of its current
set of cores, and a flag (hs is opt) indicating whether it has verified HS to be
of minimum cost. (HS might be of minimum cost even if the Optimizer has
not verified this.) If HS is of minimum cost, its cost is a valid lower bound on
opt cost(F ) and we can update LB . Note that Optimizer’s set of cores can only
grow so the cost of a minimum-cost hitting set cannot decrease and the updates
never decrease LB .

The SAT solver tests if removing HS from Fs results in satisfiability; if not
we obtain a new core, κ, and add it to the set of new cores. We then enter a loop
where we accumulate more cores, repeatedly removing all of the soft clauses in
HS and all newly discovered cores (cf. the “disjoint, g” strategy in [24]). At each
step a new core is found and the set of soft clauses passed to the SAT solver
is further reduced. Since Fh is satisfiable, the loop must terminate as we will
eventually remove enough soft clauses to obtain satisfiability. We then update
the upper bound if the found solution has lower cost.

The algorithm terminates when it finds a solution whose cost achieves the
lower bound. Such a solution must be optimal; hence Algorithm1 always returns
an optimal solution. We also have that Algorithm1 must terminate as long
as Optimizer satisfies the following general condition. During Algorithm1 a
sequence of calls are made to Optimizer (once every iteration of the while
loop). In each call Optimizer computes a hitting set of the accumulated set of
cores passed to it in the current and all previous calls, and during that call UB
is the best known upper bound.

Definition 1 (Correctness Condition). Optimizer always returns a hitting
set of its accumulated set of cores. And, for every i there exists an k > i such
that the k’th call to Optimizer returns a hitting set, HS, such that either (a)
cost(HS ) < UB or (b) HS is a minimum-cost hitting set.

Theorem 1. If Optimizer satisfies the correctness condition, then Algorithm1
must eventually terminate returning an optimal solution.

Proof. We show that the sequence of calls to Optimizer is finite, and thus the
while loop must terminate. In fact, we need only consider the sub-sequence calls
consisting of those calls where Optimizer returns a minimum-cost hitting set
or a hitting set with cost less than the current upper bound. By the correctness
condition this sub-sequence is infinite iff Algorithm 1 fails to terminate. We say
that a hitting set HS returned by Optimizer is infeasible if Fh ∪ (Fs \ HS ) is
unsatisfiable, otherwise it is feasible. Note that when HS is feasible, we will have
cost(τ) ≤ cost(HS ) for the returned model τ , and UB ≤ cost(HS ) after line 15.

Optimizer cannot return an infeasible hitting set HS more than once: HS
will cause a core to be added to Optimizer that HS does not hit, so HS will
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not be a hitting set for any subsequent calls. In the sub-sequence Optimizer
can never return a feasible hitting set HS more than twice. After HS is returned
we have that UB ≤ cost(HS ). If Optimizer also returned hs is opt = true,
then LB will become equal to UB and the algorithm will terminate. Otherwise,
if hs is opt = false, the lowered UB implies that if HS is returned once more in
the subsequence it must be with hs is opt = true, which will cause termination.
There are only a finite number of hitting sets, so the sub-sequence must be finite,
and Algorithm 1 must terminate. �

In the version of MaxHS reported on in our empirical evaluation Optimizer
utilizes both a heuristic greedy solver and an exact IP solver (IBM CPLEX). It
always uses the greedy solver unless it is passed an empty set new cores (which
happens when the previous call to Optimizer returned a feasible hitting set).
For an empty new cores it uses the IP solver to compute a hitting set. However,
it does not ask the IP solver to compute a minimum-cost hitting set. Rather
it stops the IP solver as soon as a hitting set with cost less than UB has been
found. When UB is already equals the optimal cost, the IP solver will run to
completion as a lower cost hitting set will never be found. In this case the IP
solver will find a hitting set that it can verify to be of minimum cost, and this
hitting set and hs is opt = true is returned. This scheme is used to reduce the
number of times the hitting set problem needs to be solved to optimality [11].

4 Reduced Cost Fixing

Reduced cost fixing is a standard technique in OR [6,7,22,27]. It uses an upper
bound and reduced costs obtained from an LP relaxation to fix variables in an IP.
Given a minimization IP P containing Boolean (0/1) variables, we can solve P as
an LP by allowing the Boolean variables to take on intermediate values between
0 and 1. The cost of the LP solution will be a lower bound on the optimal cost of
P . The LP solver also provides a reduced cost for the non-basic1 variables set at
0 or 1 in the LP solution. These reduced costs specify the influence of changing
a non-basic variable at 0 (1) to 1 (0) on the cost of the LP. Suppose we know a
feasible IP solution to P with cost z. If changing a non-basic variable causes the
LP solution to increase in cost beyond z, then we can fix that variable to the
value it has in the LP solution. Since the LP solution is a lower bound, putting
such variables at their opposite values would cause the cost of the IP to increase
beyond the cost of an already known feasible solution.

Here we explain how this technique can be used within IHS MaxSAT solvers.
In contrast with standard uses of reduced cost fixing we do not want to fix
variables of the IP (our IP is the IP of the hitting set problem). Rather we want
to fix variables of the MaxSAT problem from which the IP has been derived.
This can be done as follows.

1 The variables in the LP solution are either basic or non-basic. All of the non-basic
variables will be at their upper or lower bounds in the LP solution [5].
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Theorem 2. For a MaxSAT problem F = (Fh, Fs,wt), suppose we have (a)
B = {b1, . . . , bn} a set of Boolean variables where each bi = 0 (bi = 1) represents
the satisfaction (falsification) of soft clause ci ∈ Fs, (b) IPHS an IP over the bi

representing the minimum-cost hitting set problem over the current set of cores,
(c) LPHS the LP relaxation of IPHS , (d) best τ a feasible solution to F , (e) an
optimal solution to LPHS with cost zLPHS

opt , and (f) LP reduced costs rc(bi) at the
optimal basis.

Then the following simplifications can be performed without changing
opt cost(F ). (1) For every non-basic variable bi set to 0 in the optimal LPHS

solution we can make soft clause ci hard in F if zLPHS
opt + rc(bi) > cost(best τ)

or if zLPHS
opt + rc(bi) = cost(best τ) and ci is satisfied in best τ . (2) For every

non-basic variable bi set to 1 in the optimal LPHS we can make soft clause ci

false in F if zLPHS
opt −rc(bi) > cost(best τ) or if zLPHS

opt −rc(bi) = cost(best τ) and
ci is falsified in best τ .

Proof. Let bi be a non-basic variable at its lower bound in the optimal solution
to LPHS . Then either bi = 1 is feasible in LPHS or it is not.2 If it is not, then,
since LPHS is a relaxation of IPHS , bi = 1 is also infeasible in IPHS . Furthermore,
since every core is a logical consequence of F , IPHS is a relaxation of F and thus
ci = false must be infeasible in F , and we can harden ci. On the other hand, if
bi = 1 is feasible in LPHS , then by the properties of reduced costs, forcing bi = 1
will increase the optimal cost of LPHS by at least rc(bi) [3]. Stated a different
way, if LP+ is LPHS with the added constraint bi = 1, then its optimal cost will
be at least zLPHS + rc(bi). LP+ is the linear relaxation of IP+, which is IPHS

with the added constraint bi = 1; and IP+ is a relaxation of F+ which is F ∪¬ci.
Hence, cost(F+) >= zLPHS + rc(bi) and if zLPHS + rc(bi) > cost(best τ), or if
zLPHS + rc(bi) = cost(best τ) and ci is satisfied in best τ , then we can force ci

to be satisfied in F while still preserving at least one of the optimal solutions of
F . The argument for bi at its upper bound is analogous. �

In Algorithm 1 reduced cost fixing can be utilized whenever UB − LB
decreases and is small enough to allow the forcing of some unforced soft clause.
In particular, rc(bi) is upper-bounded by wt(ci) and hence ci cannot be forced
if (UB −LB) > wt(ci). We use CPLEX to solve the LP relaxation of the hitting
set problem to obtain the reduced costs; we do this just before invoking CPLEX
in Optimizer.

5 Experiments

We implemented reduced cost fixing in MaxHS v2.9.8 which entered the 2016
MaxSAT Evaluation. This version of MaxHS included a number of other features
shown to improve the solver, described in [9,11,23]. We compare the perfor-
mance of MaxHS with and without reduced cost fixing, with all other features
2 In a hitting set problem bi = 1 is always feasible. However, MaxHS can also add

other constraints to the hitting set problem via a process of constraint seeding [9].
It is not difficult to show that all of our results continue to hold with seeding.
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unchanged. We utilized IBM CPLEX v12.7 as the IP/LP solver, and ran our
experiments on computing nodes with Xeon 2.8-GHz cores and 256-GB RAM.
We limited MaxHS to 1800 s and 3.5 GB on each instance. We also report on
longer 5-h (18,000 s), 5-GB runs on Xeon 2.0-GHz cores and 256-GB RAM.

We experimented with all non-random instances that have been collected
by and made available by the MaxSAT Evaluation during the years 2008 to
2016. These include extra submitted benchmarks never used in the evalua-
tion. After pruning duplicate instances this yielded 6290 MaxSAT instances
(4361 unweighted, 1929 weighted). For the 5-h runs, however, we omitted 507
unweighted instances with no hard clauses (MS instances) most of which encode
MaxCut on random graphs. Core-based solvers, including IHS solvers, perform
poorly on such instances, and we did not expect any of these instances to com-
plete in 5 h with or without reduced cost fixing. This left 5783 instances to run
in these longer experiments (4361 unweighted, 1422 unweighted).

First we examine how frequently reduced cost fixing occurs in our benchmark
suite. Figure 1 left shows a histogram of the instances grouped by the number
of soft clauses that become fixed during solving. In 5024 of the 6290 instances
no reduced cost fixing ever occurs (3953 unweighted, 1071 weighted), but in the
remaining 1266 instances fixing can be quite common—in 791 of these instances
100 or more fixings occurred. In extreme cases over a million soft clauses were
fixed by the technique (this makes average number of soft clauses fixed mislead-
ingly large). There was little difference in the histograms between weighted and
unweighted instances once the zero fixing instances were removed; in fact, the
instance with the most fixings was unweighted.

The second question is how much overhead does reduced cost fixing incur,
particularly since the LP is solved even when no fixing occurs. There were 26
instances where fixing took more than 100 s. However, 25 of these were not
solvable with or without fixing (22 were MaxCut on random graphs). On one
solved instance fixing required 214 s out of a total solve time of 835 s (this instance
was solved in 416 s without fixing). Of the remaining 6264 instances, on 1782
instances fixing took zero seconds (LP solving was never invoked since the gap
between UB and LB was never small enough), on 3746 instances fixing took less
than 1 s, on 298 instances fixing took between 1 and 10 s, and on 438 instances
fixing took more than between 10 and 100 s. Figure 1 right shows, however, that
on these 438 instances fixing is well worth the time it takes. The scatter plot
shows that fixing provides a significant speedup for most of these instances,
especially on the harder instances.

In the rest of our plots we omit data from the 5024 instances on which no
reduced cost fixing occurred. We omitted these instances because their run times
will only vary by the overhead of fixing (and experimental variances induced
by varying cluster loads), and we have already provided data in the previous
paragraph showing that this overhead is not significant.

Figure 2 shows scatter plots for all instances, all unweighted instances and
all weighted instances. The plots show that fixing generally provides a speedup,
and that speedups occur on both weighted and unweighted instances.
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Fig. 1. Left: distribution of the frequency reduced cost fixing forces a soft clause to be
relaxed or hardened. Right: scatter plot showing that fixing on instances where fixing
takes significant time also pays off.

Fig. 2. Speedup histograms over instances on which reduced cost fixing would force
some variables in terms of log2 of CPU time with fixing and without fixing. Left: under
30-min per-instance time limit, Right: under 5-h per-instance time limit.

In Fig. 3 we show in more detail the performance improvement obtained
from reduced cost fixing. Here we computed the speedup ratio for each instance,
i.e., the CPU time taken without reduced cost fixing divided by the CPU time
taken when reduced cost fixing is used. As this ratio will be between 0 and 1,
for instances that are slowed down by fixing we took log2 of this ratio which
produces a symmetry between speedups and slowdowns. The plots are in the
form of histograms showing for how many instances experience various ranges of
the log speedup. Figure 3 left shows the log speedup ratio for all instances, while
on the right we examine the 4361 instances that were run under a per-instance
time limit of 5 h.

These histograms verify the value of our technique for exploiting reduced cost
fixing in IHS based MaxSAT solvers. When we look at the data from the 5-h
runs we see an even more pronounced effect with fewer instances being slowed
down, and a smoother distribution for the instances being speeded up.
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Fig. 3. Scatter plots of CPU times with and without reduced cost fixing, omit-
ting instances 5024 where no fixing occurred. Left: all instances; Middle: unweighted
instances; Right: weighted instances.

6 Conclusions

We proposed the use of reduced cost fixing—a standard approach in IP—in
MaxSAT solving as a means of utilizing bounds information during search to
infer knowledge of soft clauses which are satisfied or left falsified by some opti-
mal solutions. We explained how reduced cost fixing can be integrated into the
implicit hitting set approach to MaxSAT by performing reduced cost analy-
sis directly on the LP relaxation of the hitting-set IP already utilized in the
IHS search routine. We showed through an extensive empirical evaluation that
reduced cost fixing can provide considerable speedups improving on the overall
performance of MaxHS.
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